Core Content Connectors by Common Core State Standards: Mathematics Functions

From NCSC Wiki
Jump to: navigation, search

BACK TO Core Content Connectors


Contents

Mathematics High School—Functions Overview

Interpreting Functions

  • Understand the concept of a function and use function notation
  • Interpret functions that arise in applications in terms of the context
  • Analyze functions using different representations

Building Functions

  • Build a function that models a relationship between two quantities
  • Build new functions from existing functions

Linear, Quadratic, and Exponential Models

  • Construct and compare linear, quadratic, and exponential models and solve problems
  • Interpret expressions for functions in terms of the situation they model

Trigonometric Functions

  • Extend the domain of trigonometric functions using the unit circle
  • Model periodic phenomena with trigonometric functions
  • Prove and apply trigonometric identities



Interpreting Functions HSF-IF
Understand the concept of a function and use function notation
1. Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then f(x) denotes the output of f corresponding to the input x. The graph of f is the graph of the equation y = f(x).
CCCs linked to HSF-IF.A.1 None
2. Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.
CCCs linked to HSF-IF.A.2 None
3. Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Fibonacci sequence is defined recursively by f(0) = f(1) = 1, f(n+1) = f(n) + f(n-1) for n ≥ 1.
CCCs linked to HSF-IF.A.3 None
Interpret functions that arise in applications in terms of the context
4. For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.
CCCs linked to HSF-IF.B.4 None
5. Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function h(n) gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function.
CCCs linked to HSF-IF.B.5 None
6. Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.
CCCs linked to HSF-IF.B.6 None
Analyze functions using different representations
7. Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.
a. Graph linear and quadratic functions and show intercepts, maxima, and minima.
b. Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions.
c. Graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior.
d. Graph rational functions, identifying zeros and asymptotes when suitable factorizations are available, and showing end behavior.
e. Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude.
CCCs linked to HSF-IF.C.7 None
8. Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function.
a. Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context.
b. Use the properties of exponents to interpret expressions for exponential functions. For example, identify percent rate of change in functions such as y = (1.02)ͭ, y = (0.97)ᵗ, y = (1.01)12ᵗ, y = (1.2)ͭ / 10, and classify them as representing exponential growth or decay.
CCCs linked to HSF-IF.C.8 None
9. Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.
CCCs linked to HSF-IF.C.9 None



Building Functions HSF-BF
Build a function that models a relationship between two quantities
1. Write a function that describes a relationship between two quantities.
a. Determine an explicit expression, a recursive process, or steps for calculation from a context.
b. Combine standard function types using arithmetic operations. For example, build a function that models the temperature of a cooling body by adding a constant function to a decaying exponential, and relate these functions to the model.
c. Compose functions. For example, if T(y) is the temperature in the atmosphere as a function of height, and h(t) is the height of a weather balloon as a function of time, then T(h(t)) is the temperature at the location of the weather balloon as a function of time.
CCCs linked to HSF-BF.A.1 None
2. Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms.
CCCs linked to HSF-BF.A.2 None
Build new functions from existing functions
3. Identify the effect on the graph of replacing f(x) by f(x) + k, k f(x), f(kx), and f(x + k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.
CCCs linked to HSF-BF.B.3 None
4. Find inverse functions.
a. Solve an equation of the form f(x) = c for a simple function f that has an inverse and write an expression for the inverse. For example, f(x) =2 x3 or f(x) = (x+1)/(x–1) for x ≠ 1.
b. Verify by composition that one function is the inverse of another.
c. Read values of an inverse function from a graph or a table, given that the function has an inverse.
d. Produce an invertible function from a non-invertible function by restricting the domain.
CCCs linked to HSF-BF.B.4 None
5. Understand the inverse relationship between exponents and logarithms and use this relationship to solve problems involving logarithms and exponents.
CCCs linked to HSF-BF.B.5 None



Linear, Quadratic, and Exponential Models HSF-LE
Construct and compare linear, quadratic, and exponential models and solve problems
1. Distinguish between situations that can be modeled with linear functions and with exponential functions.
a. Prove that linear functions grow by equal differences over equal intervals, and that exponential functions grow by equal factors over equal intervals.
b. Recognize situations in which one quantity changes at a constant rate per unit interval relative to another.
c. Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another.
CCCs linked to HSF-LE.A.1 H.PRF.1c1 Select the appropriate graphical representation of a linear model based on real-world events.
H.PRF.1b1 In a linear situation using graphs or numbers, predict the change in rate based on a given change in one variable (e.g., If I have been adding sugar at a rate of 1T per cup of water. What happens to my rate if I switch to 2T of sugar for every cup of water?).
2. Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table).
CCCs linked to HSF-LE.A.2 None
3. Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function.
CCCs linked to HSF-LE.A.3 H.PRF.2c1 Make predictions based on a given model (for example, a weather model, data for athletes over years).
4. For exponential models, express as a logarithm the solution to abcᵗ = d where a, c, and d are numbers and the base b is 2, 10, or e; evaluate the logarithm using technology.
CCCs linked to HSF-LE.A.4 None
Interpret expressions for functions in terms of the situation they model
5. Interpret the parameters in a linear or exponential function in terms of a context.
CCCs linked to HSF-LE.B.5 None



Trigonometric Functions HSF-TF
Extend the domain of trigonometric functions using the unit circle
1. Understand radian measure of an angle as the length of the arc on the unit circle subtended by the angle.
CCCs linked to HSF-TF.A.1 None
2. Explain how the unit circle in the coordinate plane enables the extension of trigonometric functions to all real numbers, interpreted as radian measures of angles traversed counter-clockwise around the unit circle.
CCCs linked to HSF-TF.A.2 None
3. Use special triangles to determine geometrically the values of sine, cosine, tangent for π/3, π/4 and π/6, and use the unit circle to express the values of sine, cosine, and tangent for π–x, π+x, and 2π–x in terms of their values for x, where x is any real number.
CCCs linked to HSF-TF.A.3 None
4. Use the unit circle to explain symmetry (odd and even) and periodicity of trigonometric functions.
CCCs linked to HSF-TF.A.4 None
Model periodic phenomena with trigonometric functions
5. Choose trigonometric functions to model periodic phenomena with specified amplitude, frequency, and midline.
CCCs linked to HSF-TF.B.5 None
6. Understand that restricting a trigonometric function to a domain on which it is always increasing or always decreasing allows its inverse to be constructed.
CCCs linked to HSF-TF.B.6 None
7. Use inverse functions to solve trigonometric equations that arise in modeling contexts; evaluate the solutions using technology, and interpret them in terms of the context.
CCCs linked to HSF-TF.B.7 None
Prove and apply trigonometric identities
8. Prove the Pythagorean identity sin²(θ) + cos²(θ) = 1 and use it to find sin(θ), cos(θ), or tan(θ) given sin(θ), cos(θ), or tan(θ) and the quadrant of the angle.
CCCs linked to HSF-TF.C.8 None
9. Prove the addition and subtraction formulas for sine, cosine, and tangent and use them to solve problems.
CCCs linked to HSF-TF.C.9 None
Personal tools
Namespaces

Variants
Actions
Navigation
Toolbox