Square and Cube Roots

What is a square root?

- The square root of a number is determined by dividing a number by itself
 - It is the opposite of squaring a number
 - Therefore, ²√9 = 3. To check the answer if you square (remember squaring means you multiply a number by itself) 3² the product is 9
 - A square root is called a Perfect Square if the square root is a whole number

 $\sqrt[2]{9} = 3$ \leftarrow Perfect square

 $\sqrt[2]{10} = 3.16228$ NOT a perfect square

What is a cube root?

- Similar to a square root, a cube root is the value of a number when it is cubed (divided into three parts).
 - Therefore, the cube root of 27 is 3. $\sqrt[3]{27} = 3$
 - To check to see if you cubed a number correctly, cube (multiplied itself three times) the solution and see if it matches the original number

Ideas for application

- Use manipulatives where students can physically move the decimal
- Always include multiple representation of numbers (e.g., $0.001 = \frac{1}{1000}$)
- Create personally-relevant word problems

Making connections

- Simplifying expressions with exponents addresses the middle and high school Core Content Connectors of
 - 6.NO.111 Identify what an exponent represents
 - 6.NO.112 Solve numerical expressions involving whole number exponents
 - 8.NO.111 Convert a number expressed in scientific notation up to 10,000
 - H.NO.1a2 Explain the influence of an exponent on the location of a decimal point in a given number
 - H.NO.2c1 Simplify expressions that include exponents
 - H.NO.2c2 Rewrite expressions that include rational exponents