Finding the surface area of a three dimensional object

National Center and State Collaborative

What is surface area?

- Surface area is the total area of all the surfaces of a three dimensional object
- Surface area can be found by using a net of the object which shows all the surfaces of an object and adding them together $\mathbf{O R}$ by applying the formula for that specific shape

Surface area of rectangular prisms: An example

- In a rectangular prism, it is helpful to decompose (unfold) the object so students can see all the different faces
- For example,

This is called a
net. A net is a two
dimensional
representation of all the faces

Surface area of rectangular prisms: An example cont.

- Based on the net, you can see that the rectangular prism is made up of 2 sets of 3 different rectangles
- Front and back- 2 by 5
- Top and bottom- 3 by 5
- 2 sides- 2 by 3

Surface area of rectangular prisms: An example cont.

- Step 1: SA= $2(2 \times 5+3 \times 5+2 \times 3)$
- Step 2: SA= $2(10+15+6)$
- Step 3: SA = $62 \mathrm{~cm}^{2}$

Don't forget the units

Surface area of cubes: An example

- For a cube, all faces have the same length and width, so for a cube with 4cm length, width, and height.
- Step 1: $\mathrm{SA}=6\left(\mathrm{I}^{\mathrm{x}} \mathrm{w}\right)$

Formula for area of a square

- Step 2: $\mathrm{SA}=6(4 \mathrm{x} 4)$

$$
=6(16)
$$

$$
=96 \mathrm{~cm}^{2}
$$

Surface area of cylinder: An example

- A cylinder is a solid with a circular base
- The height of a cylinder is the distance between its bases

- $\mathrm{SA}=2 \pi r^{2}+2 \pi r h$
\measuredangle height

Helpful Hint:
Remember to the concept of π and that it is a constant and irrational
number

Surface area of cylinder: An example

-Step 1: $S A=2 \Pi\left(3^{2}\right)+2 \Pi(3)(4)$
-Step 2: SA= $2 \Pi(9)+2 \Pi(12)$
-Step 3: SA = 18 $\boldsymbol{T}+24 \Pi$

-Step 4: SA= 42П

- Step 5: $S A \approx 131.95 \mathrm{ft}^{2}$

Note the change in symbol to communicate an approximation

Surface area of a pyramid: An example

- A pyramid is a polyhedron where the base is a polygon and the faces are triangles with a common vertex

Regular pyramid: All faces, including the base, are congruent

Surface area of a pyramid: An example

- $S A=B+1 / 2 P l$

Perimeter $=4(2.5)$

- Step 1: SA=(2.5 $\times 2.5)+1 / 2(10)(3)$
- Step 2: SA=6.25 + ½ (30)
- Step 3: $S A=6.25+15$

- Step 4: SA = $21.25 \mathrm{in}^{2}$

Surface area of a cone: An example

- A cone has a circular base and a vertex.

Surface area of a cone: An example

- $\mathrm{SA}=\pi r^{2}+\pi r \ell$
- Step 1: $S A=\pi(4)^{2}+\pi(4)(7)$
- Step $2: S A=16 \pi+28 \pi$

- Step 3: $S A \approx 44 \pi$

Note the change in symbol to communicate an approximation

Making Connections

- Finding the volume of three dimensional objects addresses the following $7^{\text {th }}$ and $8^{\text {th }}$ grade Core Content Connectors
- 7-8.NO.3c1 Use the rules for mathematical operations to verify the results when more than one operation is required to solve a problem
- 7.GM.1h2 Find the surface area of three-dimensional figures using nets of rectangles or triangles
- 7.GM.1h3 Find the area of plane figures and surface area of solid figures
- 8.GM.1g1 Recognize congruent and similar figures

